IndiaBizClub Login

x Register Free
x Register Free

plastics


Plastic
Plastic is the general term for a wide range of synthetic or semisynthetic polymerization products. They are composed of organic condensation or addition polymers and may contain other substances to improve performance or economics. There are few natural polymers generally considered to be "plastics". Plastics can be formed into objects or films or fibers. Their name is derived from the fact that many are malleable, having the property of plasticity.

Overview
Plastic can be classified in many ways, but most commonly by their polymer backbone (polyvinyl chloride, polyethylene, polymethyl methacrylate and other acrylics, silicones, polyurethanes, etc.). Other classifications include thermoplastic, thermoset, elastomer, engineering plastic, addition or condensation or polyaddition (depending on polymerization method used), and glass transition temperature or Tg.

Some plastics are partially crystalline and partially amorphous in molecular structure, giving them both a melting point (the temperature at which the attractive intermolecular forces are overcome) and one or more glass transitions (temperatures above which the extent of localized molecular is substantially increased). So-called semi-crystalline plastics include polyethylene, polypropylene, poly(vinyl chloride), polyamides (nylons), polyesters and some polyurethanes. Many plastics are completely amorphous, such as polystyrene and its copolymers, poly(methyl methacrylate), and all thermosets.

Plastics are polymers: long chains of atoms bonded to one another. Common thermoplastics range from 20,000 to 500,000 in molecular weight, while thermosets are assumed to have infinite molecular weight. These chains are made up of many repeating molecular units, known as "repeat units", derived from "monomers"; each polymer chain will have several 1000's of repeat units. The vast majority of plastics are composed of polymers of carbon and hydrogen alone or with oxygen, nitrogen, chlorine or sulfur in the backbone. (Some of commercial interest are silicon based.) The backbone is that part of the chain on the main "path" linking a large number of repeat units together. To vary the properties of plastics, both the repeat unit with different molecular groups "hanging" or "pendant" from the backbone, (usually they are "hung" as part of the monomers before linking monomers together to form the polymer chain). This customization by repeat unit's molecular structure has allowed plastics to become such an indispensable part of twenty first-century life by fine tuning the properties of the polymer.

People experimented with plastics based on natural polymers for centuries. In the nineteenth century a plastic material based on chemically modified natural polymers was discovered: Charles Goodyear discovered vulcanization of rubber (1839) and Alexander Parkes, English inventor (1813—1890) created the earliest form of plastic in 1855. He mixed pyroxylin, a partially nitrated form of cellulose (cellulose is the major component of plant cell walls), with alcohol and camphor. This produced a hard but flexible transparent material, which he called "Parkesine." The first plastic based on a synthetic polymer was made from phenol and formaldehyde, with the first viable and cheap synthesis methods invented by Leo Hendrik Baekeland in 1909, the product being known as Bakelite. Subsequently poly(vinyl chloride), polystyrene, polyethylene (polyethene), polypropylene (polypropene), polyamides (nylons), polyesters, acrylics, silicones, polyurethanes were amongst the many varieties of plastics developed and have great commercial success.

The development of plastics has come from the use of natural materials (e.g., chewing gum, shellac) to the use of chemically modified natural materials (e.g., natural rubber, nitrocellulose, collagen) and finally to completely synthetic molecules (e.g., epoxy, polyvinyl chloride, polyethylene).

In 1959, Koppers Company in Pittsburgh, PA had a team that developed the expandable polystyrene (EPS) foam cup. On this team was Edward J. Stoves who made the first commercial foam cup. The experimental cups were made of puffed rice glued together to form a cup to show how it would feel and look. The chemistry was then developed to make the cups commercial. Today, the cup is used throughout the world in countries desiring fast food, namely, the United States, Japan, Australia,and New Zealand. Freon was never used in the cups. As Stoves said, "We didn't know freon was bad for the ozone, but we knew it was not good for people so the cup never used freon to expand the beads."

The foam cup can be buried, and it is as stable as concrete and brick. No plastic film is required to protect the air and underground water. If it is properly incinerated at high temperatures, the only chemicals generated are water, carbon dioxide and carbon ash. If burned without enough oxygen or at lower temperatures (as in a campfire or household fireplace) it can produce toxic vapors and other hazardous byproducts. EPS can be recycled to make park benches, flower pots and toys.

Grow your Business Online by Registering here FREE

Register Free


Business Blog About Us Support Contact Sitemap Privacy Policy Terms & Conditions

© Copyright 2000 - 2017 IndiaBizClub. All rights reserved.